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Abstract
The effects of lattice strain and ion displacement on the bonding mechanism
of the perovskite material BaTiO3 have been studied by using the density-
functional theory within the full-potential linear augmented plane wave (FP-
LAPW) method. The valence and the bonding charge density, the density of
states (DOS), the local DOS and the partial DOS were calculated to investigate
the bonding mechanisms. The charge transfer, along with the bonding process,
was analysed by using the atoms in molecules theory (AIM). Based on the
analysis of the bonding and the topological characteristics, the evolution of the
bonding strength according to different lattice strains and ion displacements
along with the phase transition of BaTiO3 is shown quantitatively. Moreover,
the evolution of the spontaneous polarization of BaTiO3 corresponding to the
ion displacements is also discussed by a modern theory of polarization in the
present paper.

1. Introduction

Ferroelectric perovskite materials have been drawing widespread attention in recent years
for their potential applications in the domain of microelectronics and the photoelectron
industry [1, 2]. Within this family of materials, most of them have the chemical formula ABO3,
where A is a relatively large cation sitting at the corners of the unit cell, B is a relatively small
cation sitting at the centre of the unit cell, and O is the oxygen anion sitting at face-centred
positions. Above the Curie temperature, most of them have ideal cubic crystal structure.
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As the temperature is lowered, they transform from the high-symmetry paraelectric phase
to slightly distorted ferroelectric structures with tetragonal, orthorhombic and rhombohedral
symmetries. Typically, the phase transitions are characterized by a small macroscopic lattice
strain and microscopic displacement of ions [3–10]. The lattice distortions give rise to many
changes of the microscopic and the macroscopic properties, such as bonding mechanism,
charge distribution, electronic structure and spontaneous polarization, etc. Therefore, a large
number of theoretical and experimental works have focused on the effects of lattice strain and
ion displacements in the ferroelectric perovskite materials [3]. Those studies have demonstrated
successfully the changes of the properties of perovskite, such as dielectric permittivity,
piezoelectricity, pyroelectricity and spontaneous electrical polarization, according to the lattice
strain and the ion displacements. However, there are very few studies that have focused on
the evolution of the bonding mechanism of ferroelectric perovskite materials according to the
lattice distortions, to our knowledge.

It is well known that the microscopic bonding characteristics of materials determine their
macroscopic properties [11]. In particular, the bonding mechanism is one of the most important
issues to reveal the origin of ferroelectric instability and ferroelectric distortion. For example,
Cohen [12] has pointed out that the strong hybridization between the Ti 3d states and the O 2p
states contributes to forming a strong covalent bond, which is essential for the ferroelectric
instability of the perovskite oxides ATiO3 (A = Ba, Pb). Therefore, the bonding mechanism
is one of the aspects of most concern in the research of the materials. Previous works [12–15]
have shown the relationship between the bonding mechanism and the origin of ferroelectric
instability. For example, the strong p–d hybridization causes a large amount of valence charge
to return to Ti in the TiO3 unit, which makes the static charge of Ti significantly less than +4
and the static charge of O more or less neutral, rather than having a charge of −2 [1, 12, 13].
Although the above researches supply the understanding of materials’ microscopic properties,
most of them remain in a qualitative stage, to some extent. There is no doubt that quantitative
analysis is preferable for the understanding of the bonding mechanism.

In the present paper, we have carried out full potential linear augmented plane wave (FP-
LAPW) total energy calculations to investigate systematically the effects of lattice strain and
ion displacement on the bonding mechanism of a paradigmatic perovskite oxide, BaTiO3. The
present paper aims at the study of the evolution of the bonding mechanism according to the
lattice distortions. Technically, in order to give a quantitative description of the relationship
between the bonding mechanism and lattice distortions, a topological analysis [16] following
Bader’s ‘atoms in molecules’ theory has been used. The understanding of the evolution of the
bonding mechanism according to the lattice strain and the ion displacements is also expected
to be applicable to other perovskite materials.

2. Computational details and method

BaTiO3 shows a very rich phase diagram. Above the Curie temperature, it is a cubic perovskite
crystal structure (paraelectric phase), as shown in figure 1. It undergoes three consecutive
ferroelectric distortions along the directions [001] (tetragonal), [110] (orthorhombic), and [111]
(rhombohedral) at 400, 280 and 185 K, respectively [17]. In the present paper, the emphasis is
put on the bonding mechanisms of the cubic phase and the tetragonal phase. The calculations
of the electronic structures and the bonding mechanism were performed by using the WIEN2k
FP-LAPW package [18], within the framework of the density functional theory [19]. We
adopted the Perdew–Burke–Ernzerhof (PBE) functional to describe the exchange–correlation
interaction [20]. In order to ensure good convergence, the muffin-tin radius and the number of
k-points to generate the final results were chosen carefully after optimization. A satisfactory
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Figure 1. Ideal cubic structure of BaTiO3. Internal displacement (indicated by the arrows)
transforms the ideal cubic structure into the tetragonal phase.

convergence has been achieved by considering a number of FP-LAPW basis functions up to
RMT Kmax = 9.0. RMT is the muffin-tin radius and Kmax is the maximum value of the plane
wavevector that determines the so-called energy cutoff for the plane wave expansion. The self-
consistent iteration was considered to converge when the total energy and the total charge in
the atomic sphere were stable within 10−4 eV per unit cell and 10−4 electron charges per atom,
respectively. The spin–orbit (SO) coupling is a relativistic effect which scales with the atomic
number of the atoms in the materials. The perovskite materials contain the heavy elements Ba,
so the effect of SO coupling was also included in the present study.

After the convergence of the self-consistent calculations, the valence charge density ρ and
the bonding charge density �ρ(r) of the materials are obtained. The bonding charge density is
defined as the difference between the total charge density in the solid and the superpositions of
neutral atomic charge densities placed at atomic sites, i.e. [21],

�ρ(r) = ρsolid(r) −
∑

α

ρα(r − rα), (1)

where ρsolid(r) is the charge density of the crystal, and ρα(r − rα) is the charge density of
the atom α. The valence charge density and bonding-charge density can give a description
of the charge distribution and the net charge redistribution as atoms are brought together to
form a crystal, however, the description is a qualitative one. As we know, they are, to some
extent, on the qualitative stage. In order to give a quantitative description of the charge transfer
accompany with the bonding process, we carried out calculations based on the topological
analysis [16, 22–29] following Bader’s ‘atoms in molecules’ (AIM) theory.

The AIM theory is an useful tool to extract chemical information from the charge
density [16, 27]. With such an analysis, one can go beyond a purely qualitative description
of the nature and the strength of interatomic interactions. In particular, it provides a rigorous
definition of the chemical bonds for all classes of molecules and solids which cover the different
kinds of chemical bonds such as ionic, covalent, hydrogen bonds and other intermolecular
contacts [30]. The charge density ρ(r) is a scalar field defined over three-dimensional space.
The topological properties of such a scalar field are conveniently summarized in terms of the
number and the kind of its critical points (CPs). CPs are points where the first derivatives
of ρ(r) vanish, and they thus corresponding to the extreme points in the charge density—
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maxima, minima, or saddles. So, the topological features of the total electron density ρ(r) can
be characterized by analysing its gradient vector field. Critical points are located at points rcp,
where ∇ρ(rcp) = 0, and the nature of each CP is determined from the curvatures (h1, h2, h3)
of the density at this point. The latter are obtained by diagonalizing the Hessian matrix of the
electronic density scalar field. The Hessian matrix is

Hi j = ∂2ρ(r)

∂xi∂y j
(i, j = 1, 2, 3). (2)

After diagonalization,

h1 = ∂2ρ(r)

∂x1∂y1
h2 = ∂2ρ(r)

∂x2∂y2
h3 = ∂2ρ(r)

∂x3∂y3
. (3)

According to the AIM theory, each CP is denoted by a pair of integers (ω, σ ), where ω is
the number of non-zero eigenvalues of the Hessian matrix H (r) and σ is simply the algebraic
sum of the signs of the three eigenvalues. In a three-dimensional stable structure, four types of
CP can be found. A CP (3,−3) corresponds to local maxima of ρ(r) which occur at atomic
nuclear positions or at so-called non-nuclear attractors in rare cases [31]. A CP (3,−1) with
one positive eigenvalue is called a bond CP which corresponds to the saddle points of ρ(r).
Such a CP is found between every pair of neighbouring nuclei. CP (3,+1) is called a ring
CP, where ρ(r) is minimum in the plane defined by the axes associated with the two positive
curvatures and maximum in the third direction (such CPs are found within rings of bonded
atoms). CP (3,+3) is called a cage CP that corresponds to a local minimum of ρ(r) (the
cage CPs locate inside a cage nuclear arrangement). The numbers of each type of CP obey the
following relationship, depending on the nature of the system:

N(−3) − N(−1) + N(1) − N(3) = 0, or 1. (4)

The number in the brackets is σ . The sum is equal to 0 or 1 for a crystal or an isolated system,
respectively. The Laplacian of the electronic density ∇2ρ(r) is given by the trace of H (r). The
Laplacian is positive and large for ionic bonding, but it is small or negative for covalent bonds.
Within the AIM theory, a basin is associated to each attractor (3,−3) CP which is defined as
the region containing all gradient paths terminating at the attractor. The boundaries of this basin
are never crossed by any gradient vector trajectory ∇ρ �(r) and they satisfy ∇ρ �(r) · �n(r) = 0,
where �n(r) is the normal to the surface at point r . The corresponding surface is called the
zero-flux surface, and it defines the atomic basin when the attractor corresponds to a nucleus.
Based on this space partitioning, the atomic charges deduced by integrating over the whole
basin are uniquely defined. By analysing the CPs, Laplacian and the basin charge, the bonding
mechanism of BaTiO3 can be shown clearly and quantitatively.

In order to clearly describe the evolution of the spontaneous polarization according
to the ion displacements, we calculated the spontaneous polarization based on the modern
theory of polarization [32–34]. The calculations were carried out within a generalized
gradient approximation (GGA) with a plane wave basis set and projector augmented wave
pseudopotentials using the Vienna ab initio Simulation Package (VASP) [35, 36]. The plane
wave energy cutoff was 400 eV. Brillouin zone integration was obtained by calculating Kohn–
Sham wavefunctions for a grid equivalent to an 8 × 8 × 8 Monkhorst–Pack grid for a primitive
perovskite cell. Moreover, we use 10 k points along the string of polarization to obtain the
electronic contribution to the polarization.
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Figure 2. Calculated DOS and LDOS of BaTiO3 for cubic phase (a) and tetragonal phase (b). The
dashes, dotted and dashed–dotted lines denote the LDOS of Ba, Ti and O, respectively. The Fermi
level is set to the zero point. The Fermi level in the following DOS figures is set in the same way.

3. Results and discussion

3.1. Bonding mechanism of equilibrium structure

The equilibrium structures of BaTiO3 for the cubic phase and tetragonal phase were obtained
by calculating the total energy as a function of different volumes around the experimental value.
Then, the total density of state (DOS) and the local DOS (LDOS) of BaTiO3 were calculated;
they are shown in figure 2. The figures indicate that the valence band maximum (VBM) and
the conduction band minimum (CBM) mainly come from the Ti 3d states and the O 2p states
respectively for both cubic and tetragonal phase. The results not only reveal the strong coupling
between the O 2p states and Ti 3d states, but also show the contribution of the Ba atom to the
valence band. We make a comparison of the total DOS and LDOS between the cubic phase and
the tetragonal phase by integrating the valence band (from −4.7 eV to Fermi level). For the
cubic phase, the contributions of Ba, Ti, and O to the valence band are 3.4%, 10.0%, and 86.6%
(O1 = O2 = O3), respectively, whereas for the tetragonal phase, the contributions of Ba, Ti, O1
and O2 plus O3 are 3.0%, 9.7%, 27.5%, and 59.8%, respectively. The results indicate that the
contribution of the TiO3 unit to the valence band in the tetragonal phase is larger than that in the
cubic phase. The results also indicate that the contribution of Ti, O1, and Ba ions to the valence
band decreases, whereas the contribution of O2 and O3 ions increases as the ferroelectric phase
transition. The deflections mainly come from the effects of ion displacements and lattice strain,
and the details will be discussed below.

The valence charge density and the bonding charge density of BaTiO3 for the cubic phase
and the tetragonal phase have been calculated, and they are shown in figure 3. Figures 3(a)
and (c) show the calculated valence charge density for the cubic and the tetragonal BaTiO3,
respectively. The distribution of the charge density around the Ba ion indicates that the bonding
between Ba and the TiO3 unit is mainly ionic in nature. In the TiO3 unit, there are some sharing
charges between Ti and O, which show some covalent characteristics of the Ti–O bond. The
bonding charge density is shown in figures 3(b) and (d) for the cubic phase and the tetragonal
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Figure 3. Valence charge density and bonding charge density of BaTiO3 in the [110] plane for
both cubic and tetragonal phases. (a) and (b) are the valence charge density and the bonding charge
density for the cubic phase, respectively. (c) and (d) are the valence charge density and the bonding
charge density for the tetragonal phase. The contour step size is 1.5 × 10−2 e/au3 for the valence
charge density and 1.8 × 10−3 e/au3 for the bonding charge density.

Table 1. Average atomic basin charge (e−) within the atomic basin of Ba, Ti and O calculated
according to Bader’s topological analysis. The negative value means charges transfer into the atomic
basin and the positive value means charges transfer out of the atomic basin in the bonding process.

Ba Ti O1 O2 O3 Method

Cubic phase 1.547 2.225 −1.255 −1.255 −1.255 First principles + AIM
Tetragonal phase 1.550 2.210 −1.232 −1.260 −1.260 First principles + AIM
Cubic phase 1.48 1.86 −1.29 −1.29 −1.29 Empirical modela

Cubic phase 1.39 1.79 −1.39 −1.39 −1.39 First principlesb

Nominal charge 2 4 −2 −2 −2 —

a Reference [37].
b Reference [38].

phase, respectively, where the dashed lines denote the electrons moving out relative to the
atomic electrons’ superpositions in the bonding process. The figures indicate that electrons
accumulate between the Ti and O atoms, implying strong covalent characteristics.

In order to give a quantitative analysis of the charge transfer according to the bonding
process, we calculated the average atomic basin charge based on the AIM theory, and the
results are listed in table 1. The patterns of the trajectories of ∇ρ(r) in the (100) and the
(110) planes of cubic BaTiO3 are also displayed in figure 4 (here parts of CP(3, 3) are omitted
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Figure 4. Trajectories of ∇ρ(r) in the (100) plane (a) and (110) plane (b) for the cubic phase. The
arrows show the direction of some chosen trajectories. The dashed line is the intersection between
the atomic basin surface for (100) and (110) planes. The bond CPs and cage CPs are labelled with
black circles and grey circles respectively.

because of the symmetric distribution). Firstly, the results show a strong covalent characteristic
between Ti and O. Secondly, there are some charges remaining in the Ba atomic basin, which
means that the charges of the Ba ion are less than the nominal chemical charges (+2 for Ba).
Namely, there are some covalent characteristics between Ba and the TiO3 unit. The calculated
results in the present study are in good agreement with those of previous works [37, 38]. The
calculated basin charges show that the charges in the Ti and O1 atomic basin for the tetragonal
phase are less than those of cubic phase. And the charges in the O2, O3 and Ba atomic basin
for the tetragonal phase are larger than those of the cubic phase. The difference of the basin
charges between the two phases mainly come from ferroelectric distortions which include a
small macroscopic lattice strain and microscopic displacement of ions. The distortions change
the p–d coupling strength between Ti and O, which induces a redistribution of the bonding
charges. The details will be discussed below.
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Figure 5. Total DOS and the PDOS of BaTiO3 for four strains. (a) Total DOS, (b) PDOS of Ti 3d
state, (c) PDOS of O1 2p state, (d) PDOS of O2, O3 2p states. Solid, dashed, dotted and short
dashed lines denote the strain values 1, 1.01, 1.02 and 1.03, respectively.

Table 2. Average charge in atomic basin of Ba, Ti, O1, O2 and O3 according to the macroscopic
strains (c/a = 1, 1.01, 1.02 and 1.03).

c/a Ba Ti O1 O2 O3

1.00 1.547 2.225 −1.255 −1.255 −1.255
1.01 1.550 2.223 −1.259 −1.253 −1.253
1.02 1.550 2.222 −1.264 −1.250 −1.250
1.03 1.550 2.222 −1.268 −1.248 −1.248

3.2. Effects of lattice strain

Experimentally, there is a c/a = 1.01 strain in the tetragonal phase of BaTiO3. In order to
understand the strain on the bonding mechanism, we have chosen four different c/a ratios,
c/a = 1, 1.01, 1.02 and 1.03, to investigate the evolution of the bonding mechanism; c/a = 1
corresponds to the cubic phase. In order to simplify the calculations, ion displacement is not
considered here. Figure 5 shows the results of the DOS and the partial DOS (PDOS) for
different strains. The results indicate that the lattice strain broaden the width of the DOS at
the valence band region compared with that of the cubic phase. As the strain is increased, the
total DOS becomes increasingly smooth. Meanwhile, the lattice strain leads to charge transfer
between the atomic basins. The average charges according to different strains in Ba, Ti, and
O atomic basin are listed in table 2. The average atomic basin charges of O1 increase as the
strain increases. It is well known, that the c/a lattice strain at fixed volume increases the
Ti–O1 distance and decreases the Ti–O2(O3) distance in the TiO3 unit, which facilitates the
(001) ferroelectric distortion. The difference of the average atomic charge between O1 and
O2(O3) indicates that the c/a distortions cause the bonding strength between Ti and O in the
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Figure 6. Three steps of the ion displacements. (a) Ti displaced along the [001] direction, (b) O1
displaced along the [001̄] direction, (c) O2(O3) displaced along the [001̄] direction.

TiO3 octahedral unit to become unbalanced. The unbalanced bonding situation induces the
displacements of Ti and O ions, which further induce the polarization. The results also indicate
that, as the lattice strain becomes larger, the atomic charge of O1 increases and that of O2, O3
decreases. As we know, the hybridization between Ti 3d and O 2p plays an important role
in the TiO3 octahedral bonding mechanism. So the charge transfer between the Ti and O can
be decomposed into two parts. Firstly, the hybridization between O 2p and Ti 4s makes the
bonding charge close to the O ion. The charge transfer is found to occur from the Ti atomic
basin to the basins of O. Secondly, the coupling between Ti 3d and O 2p states pulls the bonding
charge back to the cation because of the localization of the d orbitals around Ti. Consequently,
the atomic charge in O1, O2 and O3 tends to be larger (smaller) as the bond length becomes
longer (shorter) along with the lattice strain. On the other hand, the charge in the Ba atomic
basin increases according to the lattice strain, which means the ionicity between Ba and TiO3

unit in the tetragonal phase is larger than that of the cubic one.

3.3. Effects of ion displacements

Experimentally, the ions are located at (a/2, a/2, c/2 + �Ti), (a/2, a/2,−�O1),
(0, a/2, c/2 − �O2), (a/2, 0, c/2 − �O3) and (0, 0, 0) for Ti, O1, O2, O3 and Ba ions,
respectively, for the ferroelectric phase. �Ti, �O1, �O2, and �O3 are the displacements for
Ti, O1, O2 and O3 relative to the ideal tetragonal structure, respectively. According to the
experimental results, �Ti, �O1 and �O2(O3) are 0.055, 0.101, and 0.061 Å, respectively. In
order to investigate the effects of ion displacements on the bonding mechanism, we decomposed
the ion displacements into three steps, as shown in figure 6. Firstly, the Ti ion is displaced
along the [001] direction from zero to 0.10 Å (�Ti = 0, 0.055 and 0.10 Å, respectively),
and �O1 = �O2 = �O3 = 0. Secondly, the O1 ion is displaced along the [001̄] direction
from zero to 0.20 Å (�O1 = 0, 0.101 and 0.20 Å, respectively), and �O2 = �O3 = 0,
�Ti = 0.055 Å. Lastly, O2 and O3 ions are displaced along the [001̄] direction from zero
to 0.15 Å (�O2 = �O3 = 0, 0.061 and 0.15 Å, respectively), and �Ti = 0.055 Å,
�O1 = 0.101 Å. In this way, we can describe the effects of the ion displacements on the
bonding mechanisms clearly and separately.

The DOSs following the three different ion displacement steps were calculated; they are
shown in figure 7. The displacement of Ti leads to a trivial down-shift of the valence band, as
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Figure 7. DOS of tetragonal structure BaTiO3 with different ion displacements. (a) Ti
displacements; (b) O1 displacements; (c) O2, O3 displacements.

shown in figure 7(a). The displacement of O1 gives rise to a large down-shift of the valence
band and up-shift of the conduction band states, which enlarges the band gap. The band gap
increases by about 0.11 eV as O1 is displaced to the site of the stable ferroelectric phase. The
peaks of the DOS at the valence band region are also changed with the displacement of O1.
Typically, on increasing of the displacement, peak i becomes weaker and peak j becomes
sharper. Although the displacement of O2 and O3 does not give rise to a DOS energy shift as
large as that of the O1 ion, both i and j peaks are also now obviously weaker. The valence
and conduction band also shift inversely and the band gap is enlarged by about 0.03 eV. In
summary, the calculated results indicate that the ferroelectric distortions increase the band gap
by about 0.18 eV.

The p–d hybridization is sensitive to the shift of the bond length, and the change of the
hybridized strength determines the charges in the atomic basin, as mentioned above. The ion
displacements produce the bond length shift and further induce the change of the charge transfer
among ions. The average atomic basin charges based on AIM theory show that the charges in
the Ba atomic basin (1.550 electrons) are almost independent of the displacements of the ions.
As for the TiO3 unit, the charge transfer between Ti and O can be summarized as follows:
(i) there are more than 0.02 electrons that transfer into the Ti and O1 atomic basins due to the
opposite displacement between Ti and O1. The displacement of O2 and O3 leads to a trivial
decrease of the charges in the Ti and O1 atomic basins. (ii) The charges in O2 and O3 atomic
basins increase (0.01 electrons) as the Ti and O1 ions are displaced, and trivially decreased
as O2 and O3 ions are displaced. Cohen [12] has pointed out that the long-range Coulomb
forces favour the ferroelectric state and the short-range interatomic repulsive forces favour the
paraelectric phase. Based on Cohen’s statements, the decrease of the charge transfer from the
Ti atomic basin into the O atomic basin weaken the short-range repulsive forces and favour the
stabilization of the ferroelectric tetragonal phase. Therefore, opposite displacement between Ti
and O is very important for stabilizing the tetragonal structure.

10
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Figure 8. Laplacian ∇2ρ of Ti–O1 bond CP according to different ion displacements. (a) Ti
displacements; (b) O1 displacements; (c) O2(O3) displacements. The insets are the ratios |h1|/h3
according to different ions displacements.

According to the definition, a CP is a point where the gradient of a charge density vanishes.
Calculating the Hessian of the density, we can characterize each critical point by the principal
curvatures of the charge density (eigenvalues of the Hessian). As mentioned above, the CP
(3,−1) is called a bond CP that corresponds to a saddle point of ρ. Such a point is found
between every pair of neighbouring nuclei, as shown in figure 4. Bader has pointed out that
the presence of a bond path is a necessary condition for two atoms to be bonded to one another
[27]. For a bond CP, the two curvatures calculated in the directions perpendicular to the bond
are equal (h1 and h2). The ratio of principal curvatures |h1|/h3 together with the Laplacian
provides the information for a classification of chemical bonding. A small value |h1|/h3 � 1
is typical for closed-shell (ionic) interactions, while for covalent bonding the ratio increases
with the increase of bond strength. Accordingly, the Laplacian is positive and large for ionic
bonding, but small or negative for covalent bonds. The dependence of the Laplacian and the
curvature ratio |h1|/h3 on the different ion displacements for the most important bond CP
(3,−1) (BCP) between Ti and the top O1 (BCP1) and between Ti and the bottom O1 (BCP2)
are shown in figure 8. The results indicate that the Laplacian of BCP1 increases and the
Laplacian of BCP2 decreases as Ti and O1 ions are oppositely displaced. This means that
the opposite displacements between Ti and O1 increase (reduce) the ionic nature of the bond
between Ti and top (bottom) O1. At the same time, the bond strength for both Ti–O1 bonds
decrease as the ion displacement. The Laplacian and the curvature ratio |h1|/h3 for two kinds
of BCP almost remain invariable when the O2 and O3 ions are displaced.

In summary, our quantitatively calculated results are very consistent with the results of
previous works [39]. But, some important points should be mentioned here. Firstly, the
influences of the lattice strain and ion displacements on the bonding nature are not restricted to
Ti and O atoms but also involve Ba. In particular, the ionicity between Ba and the TiO3 unit
increases corresponding to the lattice strain. Moreover, the results shown in present paper
indicate that there is more covalent character between Ba and the TiO3 unit than in those
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Figure 9. Spontaneous polarization according to the displacement of ions (Ti, O1 and O2(O3)).
Square, circle and star denote the displacement of Ti, O1 and O2(O3), respectively. The direction
of the arrow shows the trend of polarization corresponding to ion displacements. Characters a–c
denote the polarization as the ion is displaced to the experimental siting at each step.

previous assumptions. Secondly, the lattice distortions reduce the bond strength between Ti and
O. Finally, the charges in the TiO3 unit are sensitive to lattice distortions, and the deflections
of the atomic basin charges will lead to a spontaneous polarization along the direction of ion
displacement; details will be discussed below.

3.4. Spontaneous polarization

Although we can predict that the ferroelectric distortions produce the deflection of the atomic
basin charges and induce spontaneous polarization, we cannot describe the polarization
accurately by the basin charges. According to the modern theory of polarization,
the macroscopic polarization is best defined as a Berry phase of the electronic Bloch
wavefunctions. The basin charges are derived from the charge density which comes from
the square modulus of the occupied orbitals, so the any phase information is lost. Therefore,
in order to give the dependence of the polarization P on the ion displacements, we have
applied the Berry phase (or ‘modern’) theory of polarization [32–34]. The calculations are
restricted to ion displacements along the c axis in a fixed tetragonal structure with c/a =
1.01. The centrosymmetric structure without ion displacements was chosen as the reference
structure in our calculations, and its polarization is zero. In this approach, it is assumed
that the transformation from the ideal centrosymmetric structure (tetragonal structure without
ion displacements) to the polar structure (tetragonal structure with ion displacements) is a
continuous adiabatic path. The total polarization P for a polar structure can be calculated as the
sum of the ionic and electronic contributions. The electronic contribution to the polarization
is calculated as a geometric phase, formally equivalent to the sum of Wannier centres of the
occupied band. Detailed discussions of the modern theory of polarization can be found in [32].

In this way, we can investigate the contributions of the different ion (Ti, O1 and
O2(O3)) displacements to the spontaneous polarization, and the calculated results are shown
in figure 9. The calculated results show that the polarization P increases linearly according
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to the displacements of all the three types of ions. The polarization P increases from 0.00
to 0.071 C m−2 when Ti is displaced from 0.00 to 0.10 Å. While the Ti ion is situated at
the experimental lattice site, the polarization is 0.037 C m−2. The polarization P increases
from 0.037 C m−2 to 0.344 C m−2 as the O1 ion is displaced from 0.0 to 0.20 Å (while the
Ti remains at the experimental site). While Ti and O1 are situated at the experimental lattice
site, the polarization P increases from 0.227 to 0.370 C m−2 as O2(O3) ions are displaced from
0.00 to 0.15 Å. The lowercase letter c denotes the polarization as all the ions are situated at
equilibrium sites, and the polarization is 0.282 C m−2 (as shown in figure 9) which is in good
agreement with the experimental value (0.26–0.27 C m−2) [40, 41]. Part of the error could be
attributed to the fact that our calculated value is an upper limit, related to an idealized perfect
crystal. A real sample always presents defects that tend to lower the measured polarization.

As we know, the macroscopic electric polarization relies on the dynamic process of charge
redistribution, which is strongly related to the bonding mechanism of the system. Figure 9
shows that relative displacements of Ti–O lead to an increase of the polarization. Such an
increase in the polarization can be readily understood in terms of the covalent nature involved
in the orbital hybridizations between Ti–O, as mentioned above. As the ions are displaced, the
average strength of the hybridization between Ti d and O p states is weakened, which softens
the Ti–O repulsion and allows the ferroelectric instability. Therefore, a strong dynamic charge
transfer takes place as the bond length is varied, which strengthens the long-range Coulomb
interactions and favours the ferroelectric distortions.

4. Conclusions

The effects of ion displacements and lattice strain on the bonding mechanism of ferroelectrics
perovskite material BaTiO3 have been studied by using the FP-LAPW method in combination
with the AIM theory. The density of states, the charge density and the charge transfer between
atomic basins have been calculated for both cubic and tetragonal phase of BaTiO3. The results
indicate that the contributions to the valence states not only come from O and Ti atoms but also
from the Ba atom. Charge density and Bader’s topological analysis show strong deflections
of p–d hybridization accompanying the ferroelectric displacements. The results also show a
covalent nature of Ti–O bond and an incomplete ionic characteristic between Ba and the TiO3

unit. The analysis of the effects of ion displacement on the bonding mechanism indicates
that the charge transfer between atomic basins contributes to the stabilization of the tetragonal
phase and produces a polarization along the direction of ion displacement. At the same time,
the Ti–O bond strength will be reduced according to the relative displacements of Ti and O. The
spontaneous polarization (0.282 C m−2) calculated by the Berry phase theory of polarization
is very consistent with experimental data. The nearly linear evolutions of the spontaneous
polarization according to different ion displacements are also found in present paper.
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